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Abstract. The algebraic properties of interval vectors (boxes) are studied. Quasilinear spaces with
group structure are studied. Some fundamental algebraic properties are developed, especially in
relation to the quasidistributive law, leading to a generalization of the familiar theory of linear spaces.
In particular, linear dependence and basis are defined. It is proved that a quasilinear space with group
structure is a direct sum of a linear and a symmetric space. A detailed characterization of symmetric
quasilinear spaces with group structure is found.

1. Introduction

Many-dimensional intervals (interval vectors, boxes) have been increasingly used
in interval analysis and reliable computing. Therefore it is necessary to study their
algebraic properties and the operations and relations between them. Interval vectors
form a quasilinear space with respect to addition and multiplication by scalar in the
sense of [13]. A quasilinear space is an abelian cancellative monoid with respect
to addition, in particular, the monoid can be a group. By means of the familiar
extension method (used, e. g., when defining negative numbers) any quasilinear
space can be embedded into a quasilinear space which is a group [7]. Therefore it
is important to study quasilinear spaces with group structure. Quasilinear spaces
with group structure have remarkable algebraic properties (such as cancellation
law, existence of center, quasidistributive law, etc.) and can be effectively used for
algebraic calculations. Some early results related to quasilinear spaces can be found
in [2]–[6], [14].

In this work we study the algebraic properties of intervals in the lines of [11],
taking into account that intervals are quasilinear systems. We show that in a quasi-
linear space with group structure one can introduce analogues of the theory of
linear spaces, like linear combinations, linear dependence, basis, etc. The formu-
lation and solution of certain algebraic problems in quasilinear spaces is based on
an appropriate terminology and notation. We briefly outline a theory of quasilinear
spaces with group structure, which is an extension of the theory of linear spaces.
Here we develop the theory using an alternative and more simple approach than
the one in [11], considering first in some detail the symmetric case. Only a few
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proofs are given due to space limit; the reader interested in proofs may consult [11],
where the properties of abstract quasilinear spaces are studied and applications to
convex bodies and support functions are discussed. The theoretical foundation in
this work is developed gradually and step-wise; all omitted proofs are brief and
transparent.

Interval operations (for proper intervals). By R we denote the ordered field of
reals; the n-dimensional real vector space is R n, n ≥ 1. For a = (a1, a2, …, an) ∈ R

n,
b = (b1, b2, …, bn) ∈ R

n, the partial order “≤” is given by a ≤ b ⇐⇒ ai ≤ bi for all
i = 1, …, n. For a′, a′′ ∈ R

n, a′′ ≥ 0, the set A = (a′; a′′) = {a ∈ R
n | a′ − a′′ ≤ a ≤

a′ +a′′} = {a ∈ R
n | |a′−a| ≤ a′′} is called an (n-dimensional) interval (or box) in

R
n; a′ is the center of A and a′′ is the radius of A. The set of all compact intervals in

R is denoted by I(R ). The set of all n-dimensional intervals in R
n is K = I(R n). The

set R n is considered as a subset of K; as such it is denoted by KD ⊂ K, KD
∼= R

n (the
letter “D” stands for “distributive” or “degenerate” elements). We have 0 ∈ KD.

Addition of two intervals is defined by A + B = {c | c = a + b, a ∈ A, b ∈ B},
A, B ∈ K; here a, b, c ∈ R

n. The set K is an abelian cancellative (a. c.) monoid
Q = (Q, +) with neutral element 0 [1], [8]. We recall that a monoid is a semigroup
(i.e. (A + B) + C = A + (B + C)) with null (i.e. A + 0 = A); abelian means commutative
(i.e. (A + B) + C = A + (B + C)) and cancellative means that the cancellation law (i.e.
A + C = B + C =⇒ A = B) is satisfied.

Multiplication of an interval by (real) scalar ∗ : R × K −→ K is defined by
α ∗ B = {c | c = αb, b ∈ B}, α ∈ R , B ∈ K, b, c ∈ R

n. For A, B, C ∈ K, α, β, γ ∈ R ,
we have:

γ ∗ (A + B) = γ ∗ A + γ ∗ B, (1.1)

α ∗ (β ∗ C) = (αβ) ∗ C, (1.2)

1 ∗ A = A, (1.3)

(α + β) ∗ C = α ∗ C + β ∗ C, if αβ ≥ 0. (1.4)

Relation (1.4) is called quasidistributive law. Negation ¬ : K −→ K is defined
by ¬A = (−1) ∗ A. We have ¬(γ ∗ A) = (−1) ∗ (γ ∗ A) = (−γ ) ∗ A = γ ∗ (¬A) for
γ ∈ R and A ∈ K. Subtraction is defined by A ¬ B = A + (¬B).

An interval A ∈ K is called (centrally) symmetric, if A = ¬A. The set of all
symmetric intervals is KS = {A ∈ K | A = ¬A}. For A ∈ K, we have A ¬ A ∈ KS;
indeed, ¬(A ¬ A) = ¬A + A = A ¬ A. The set of all degenerate intervals A ∈ K
is KD = {A ∈ K | A + (¬A) = 0} ∼= R

n. Note that every degenerate interval is
distributive in the sense that for such intervals relation (1.4) holds for all α, β ∈ R ;
hence the space KD is linear.

Remark 1.1. Instead of “¬” the symbol “−” is widely used in the literature on
interval (and convex) analysis. Note that A + (¬A) = 0 for A ∈ K \ KD. Hence,
the use of the symbol “−” to denote negation may lead to confusion, for “−” is
normally used to denote opposite elements opp(A), such that A + opp(A) = 0. We
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use “−” only for elements of a linear space or a field, where opposite and negative
coincide and no confusion may occur. We thus avoid the use of “−” in the case of
intervals.

2. Quasilinear Spaces

Assume that Q = (Q, +) is an abelian cancellative (a. c.) monoid with neutral
element 0. An element A ∈ Q is invertible, if there exists X ∈ Q such that A+X = 0,
in this case the (unique) element X is the opposite (or additive inverse) of A,
symbolically X = opp(A). The set QI of all invertible elements of an a. c. monoid
(Q, +) forms an abelian group (QI , +), which is a nonempty subgroup of the monoid
(due to 0 ∈ QI). In the special case Q = QI the monoid is a group. A monoid, which
is not a group is called a proper monoid.

Let (Q, +) be an a. c. monoid and “∗” be multiplication by scalar on R × Q
satisfying (1.1)–(1.4). The algebraic system (Q, +, R , ∗) is called quasilinear space
(over R ) with cancellation law or just quasilinear space (in this paper we do not
consider quasilinear spaces which are not cancellative). A more general definition
of a quasilinear space (not necessarily cancellative) is given in [13].

Multiplication by “−1” is called negation in Q and is denoted by “¬”; we write
¬B = (−1) ∗ B; A ¬ B = A + (¬B). Looking at the quasilinear law (1.4) we may ask
is there a relation between the two expressions (α + β) ∗ C and α ∗ C + β ∗ C in the
case αβ < 0? The following proposition gives the answer to that question:

PROPOSITION 2.1. Let Q be a quasilinear space. Then for all C ∈ Q, α, β ∈ R ,

(α + β) ∗ C + γ ∗ (C ¬ C) = α ∗ C + β ∗ C, (2.1)

where γ is given by γ = {0, if αβ ≥ 0; min{|α|, |β|}, if αβ < 0}.

Proof. If αβ ≥ 0, then from the quasidistributive law (1.4) we have γ = 0.
Assume αβ < 0. Consider the subcase α > 0, 0 < −β ≤ α. Denote γ = −β > 0,
α + β = δ ≥ 0 (and hence: α = γ + δ > 0). Using (γ + δ) ∗ C = γ ∗ C + δ ∗ C, γδ ≥ 0,
we obtain α ∗ C + β ∗ C = (γ + δ) ∗ C + (−γ ) ∗ C = δ ∗ C + γ ∗ C + (−γ ) ∗ C =
(α + β) ∗ C + γ ∗ (C ¬ C). The remaining cases are treated similarly. �

Obviously, for αβ ≥ 0 relations (1.4) and (2.1) are equivalent. Proposition 2.1
implies:

COROLLARY 2.1 (linearity condition) [6], [14]. For C ∈ Q the two conditions:
i) C ¬ C = 0 and ii) (α + β) ∗ C = α ∗ C + β ∗ C for all α, β ∈ R , are equivalent.

The set of all invertable elements, whose opposite and negative coincide, is
denoted by QD, that is, for A ∈ QD we have A + (¬A) = 0; symbolically QD =
{A ∈ Q | A ¬ A = 0}. A (quasilinear) space Q, such that Q = QD, is linear.
The elements of a linear space are said to be distributive or linear. Note that in a
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quasilinear space every linear element is invertable (QD ⊂ QI), but the inverse is
not necessarily true.

In the case Q = QI the quasilinear space Q is an abelian group with respect to
addition. A quasilinear space Q with Q = QI is called a quasilinear space with
group structure and will be denoted by G (in [11] quasilinear spaces with group
structure are briefly called “q-linear spaces”). If G = GD, then the quasilinear space
with group structure G is linear; hence the practically interesting case is: G = GI ,
G = GD. Therefore, when saying that a system G is a quasilinear space with group
structure, we shall normally exclude the linear case G = GD.

Remark 2.1. As mentioned in the previous remark we use the sign “−” only for
elements of a linear space (or field), where opposite and negative elements coincide
(A + (¬A) = 0 for all elements A), so that no confusion may occur. A quasilinear
space with group structure Q is generally not linear, and we shall use in Q the
notation “opp” instead of “−” (unless we speak of some linear subspace of Q).

An element A ∈ Q, such that A = ¬A, is called (centrally) symmetric. The set
of all symmetric elements of Q is QS = {A ∈ Q | ¬A = A}. The space QS is
a subspace of Q. A quasilinear space Q, such that Q = QS, is called symmetric.
Symmetric quasilinear spaces with group structure present a special interest; if Q
is such a space, then we have both Q = QS and Q = QI .

In a quasilinear space Q, if for some A ∈ Q the equation X ¬ A = A is solvable
with respect to X, then the solution X is unique. The element X / 2 = (1 / 2) ∗ X,
where X is such that X ¬ A = A, is called the center of A and is denoted by
c(A) = X / 2. Every center is linear (element of the quasilinear space), for summing
up the equations X ¬ A = A and ¬X + A = ¬A implies X ¬ X = 0.

A quasilinear space Q, such that Q = QI , is a proper monoid; such a space is
called a quasilinear space with monoid structure. Cancellative quasilinear spaces
with monoid structure are rather different from quasilinear spaces with group struc-
ture and should be studied separately. We shall not follow the unifying approach
in [6], [14], and shall introduce basis only in a quasilinear space with group struc-
ture.

Every commutative semigroup can be embedded in a group [7], hence every
quasilinear space with monoid structure can be embedded in a quasilinear one with
group structure; we briefly outline the embedding construction for the special case
of an a. c. monoid, resp. a cancellative quasilinear space (with monoid structure).
Note that a group is cancellative, hence a quasilinear space with group structure is
necessarily cancellative.

Embedding of a quasilinear space with monoid structure into a quasilin-
ear space with group structure. Let (Q, +) be an a. c. monoid. Denote by G =
(Q × Q) / ρ = Q2 / ρ the set of pairs (A, B), A, B ∈ Q, factorized by the
equivalence relation ρ : (A, B)ρ(C, D) ⇐⇒ A + D = B + C; we shall further
write “=” instead of ρ. Denote the equivalence class in G, represented by the
pair (A, B), again by (A, B), hence (A, B) = (A + X, B + X). Define addition in
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G by means of: (A, B) + (C, D) = (A + C, B + D). The null of G is the class
(Z, Z) = (0, 0) = 0. The opposite element to (A, B) ∈ G is opp(A, B) = (B, A); indeed,
(A, B) + opp(A, B) = (A, B) + (B, A) = (A + B, B + A) = 0. The system (G, +) thus
obtained is an abelian group. We have opp((A, B) + (C, D)) = opp(A, B) + opp(C, D).
The mapping ϕ : Q −→ G defined for A ∈ Q by ϕ(A) = (A, 0) ∈ G, is called
embedding. We embed Q in G by identifying A ∈ Q with the equivalence class
(A, 0) = (A + X, X), X ∈ Q; all elements of G admitting the form (A, 0) are called
proper. Hence, the proper elements of G are all pairs (U, V), U, V ∈ Q, such that
V + Y = U for some Y ∈ Q, i.e. (U, V) = (V + Y , V) = (Y , 0). The set of all proper
elements of G is ϕ(Q) = {(A, 0) | A ∈ Q} ∼= Q. The set G is an extension of Q;
we extend the set ϕ(Q) ∼= Q of proper elements of the form (A, 0) up to the set
G of elements of the form (A, B). Due to (A, B) = (A, 0) + opp(B, 0) the pair (A, B)
is called the difference of A and B and the set G is called the difference set of Q
and denoted G = disQ = Q2 / ρ; we shall also say that G is the group generated
(induced) by the monoid Q (using the extension method).

We extend multiplication by scalar ∗ : R × G −→G by the natural definition:

γ ∗ (A, B) = (γ ∗ A, γ ∗ B), A, B ∈ Q, γ ∈ R . (2.2)

THEOREM 2.1 [11]. Let (Q, +, R , ∗) be a quasilinear space, and (G, +), G = disQ,
be the induced abelian group of differences. Then the system (G, +, R , ∗) with “∗”
defined by (2.2) is a quasilinear space with group structure (over R ).

In what follows we shall use lower case Roman letters to denote the elements
of a quasilinear space with group structure G, writing e. g. a = (A′, A′′) ∈ G. The
reason for such a change in notation is that the computational rules in a quasilinear
space with monoid structure are rather different from the ones in G—the elements
of G are invertible and thus are close to elements of a linear space (vectors, n-tuples
of numbers).

According to Theorem 2.1 for a, b, c ∈ G, α, β, γ ∈ R , we have: α ∗ (β ∗ c) =
(αβ) ∗ c, γ ∗ (a + b) = γ ∗ a + γ ∗ b, 1 ∗ a = a, and, in addition, the quasidistributive
law:

(α + β) ∗ c = α ∗ c + β ∗ c, αβ ≥ 0. (2.3)

In the special case when Q is an abelian group, then G = disQ ∼= Q. Hence, the
embedding construction makes sense whenever the quasilinear space Q is a proper
monoid—then the induced space G is an abelian group, and hence is “closer” to a
linear space than Q.

Computation in quasilinear spaces with group structure. In the sequel G
denotes a quasilinear space with group structure, such that G = GI . Negation in G is
¬a = (−1)∗a. We have¬(¬a) = a, a ¬ b = a+(¬b) = a+(−1)∗b,¬(a+b) = ¬a ¬ b.
A symmetric element a ∈ G is such that a = ¬a; the set of all symmetric elements
of G is GS = {a ∈ G | a = ¬a}. The set of all linear (distributive) elements of a
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quasilinear space with group structure G is GD = {a ∈ G | a ¬ a = 0}. A quasilinear
space with group structure consisting only of linear elements (G = GI = GD) is linear
(note that a linear space is a special case of a quasilinear space such that (2.3) holds
for αβ < 0 as well); hence the interesting case is G = GI = GD. Elements from
GD ∪ GS, which are either symmetric or linear, are called axial. The null element 0
is the only axial element, which is both symmetric and linear, that is GD ∩ GS = {0}.
The elements from G \ (GD ∪ GS), that is the elements which are not axial, will be
called nonaxial. We shall consider the general case G = GD, G = GS, that is G is not
axial; if this is not the case, it will be explicitly mentioned.

The composition of opposite and negation in G is called conjugation or dual-
ization and is denoted by a− (to be read: “a dual” or “a conjugate”), symbolical-
ly: a− = opp(¬a) = ¬(opp(a)). Using conjugation we may express opposite as:
opp(a) = ¬a− = (−1) ∗ a−. For instance, the equality a = a may be equivalently
written as a ¬ a− = 0. We have (a−)− = a; also (a + b)− = a− + b−. The operators
opposite (opp), negation (neg) and conjugate (dual) are discussed in [2], [5].

PROPOSITION 2.2. For a ∈ G we have a + a− ∈ GD, and a ¬ a ∈ GS. For a ∈ GS,
γ ∈ R , we have γ ∗ a = (−γ )∗ a = |γ |∗ a. Also: a+a− = 0, iff a ∈ GS; and a ¬ a = 0,
iff a ∈ GD. For each t ∈ GD there exists x ∈ G, such that t = x + x−; all x with this
properties are of the form x = (1 / 2) ∗ t + s, where s ∈ GS is arbitrary. We have
GD = {x + x− | x ∈ G}. For each s ∈ GS there exists y ∈ G, such that s = y ¬ y; all y
with this properties are of the form y = (1 / 2) ∗ s + t, where t ∈ GD is arbitrary. We
have GS = {y ¬ y | y ∈ G}.

Rules for calculation. Recall that G is an abelian group. Using the group
properties of G (like: 0 + a = a, opp(a) + a = 0, opp(0) = 0, opp(a + b) = opp(a) +
opp(b), a + b = a + c =⇒ b = c, etc.) and Theorem 2.1, one may derive rules for
calculation in a quasilinear space with group structure. A list of rules is summarized
in the following:

PROPOSITION 2.3. For all α, β, γ ∈ R and for all a, b, c ∈ G the following
properties hold true: γ ∗ 0 = 0, in particular, (−1) ∗ 0 = ¬0 = 0; 0 ∗ a = 0;
¬(γ ∗ a) = (−γ ) ∗ a; (α − β) ∗ c = α ∗ c + (−β) ∗ c = α ∗ c ¬ β ∗ c, αβ ≥ 0;
γ ∗ (a ¬ b) = γ ∗ a ¬ γ ∗ b, i.e. γ ∗ (a + (−1) ∗ b) = γ ∗ a + (−γ ) ∗ b; γ ∗ (a + b−) =
γ ∗ a + γ ∗ b−; α ∗ c = β ∗ c =⇒ α = β or c = 0; γ ∗ a = γ ∗ b =⇒ γ = 0 or a = b;
γ ∗ a = 0=⇒ γ = 0 or a = 0; a + opp(a) = a ¬ a− = ¬a + a− = 0; (α ∗ c)− = α ∗ c−;
a + γ ∗ b = 0 ⇐⇒ a = (−γ ) ∗ b− = ¬(γ ∗ b−), in particular, a + b = 0 ⇐⇒ a = ¬b−.

Special notation. For a ∈ G denote a+ = a; then for λ ∈ {+,−} the element
aλ ∈ G (read: “a dualized by λ” or “a conjugated by λ”) is either a or a− according
to the binary value of λ . Using this notation we can write (a + b)λ = aλ + bλ . The
equalities a = b and aλ = bλ are algebraically equivalent; each one is obtained from
the other via conjugation (dualization) by λ . We have (aµ + bν)λ = aλµ + bλν, in
particular, (a + b)λ = aλ + bλ ; (α ∗ cµ )ν = α ∗ c(µν), in particular, (α ∗ cµ )µ = α ∗ c,
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(aλ )µ = aλµ , where products of the form λµ are computed according to the sign
rules: ++ = −− = +, +− = −+ = −.

It is important to know how the quasidistributive law looks like in G in the case
αβ < 0. Of course, relation (2.1) is valid in G, but the next result shows a more
useful relation.

THEOREM 2.2 [11]. For c ∈ G, α, β ∈ R :

(α + β) ∗ cσ(α +β) = α ∗ cσ(α) + β ∗ cσ(β), (2.4)

(α + β) ∗ c = α ∗ cσ(α)σ(α +β) + β ∗ cσ(β)σ(α +β), (2.5)

where σ(α) = {+, if α ≥ 0; −, if α < 0}.

It can be shown that in a quasilinear space with group structure relations (2.4),
(2.5) are equivalent to (2.3). The use of symbolic dualization makes formulae (2.4),
(2.5) very convenient for symbolic computations. For comparison, without the
use of the symbol “cλ ”, formula (2.5) obtains the following form, which requires
a knowledge of σ(α), σ(β), and, in some cases, of σ(α + β), and hence, is not
appropriate for symbolic manipulations:

(α + β) ∗ c =




α ∗ c + β ∗ c, if σ(α) = σ(β) (= σ(α + β)),
α ∗ c + β ∗ c−, if σ(α) = −σ(β), σ(α + β) = σ(α),
α ∗ c− + β ∗ c, if σ(α) = −σ(β), σ(α + β) = σ(β).

3. Algebraic Transformations and Quasilinear Equations

Relation (2.4) implies that an expression α ∗ xσ(α) + β ∗ xσ(β) can be transformed to
(α + β) ∗ xσ(α +β) for all x ∈ G and all α, β ∈ R . Using such transformation we can
easily solve an equation for x of the form α ∗ xσ(α) + β ∗ xσ(β) = d. Consider now
the expression

α ∗ xσ(α) + β ∗ x−σ(β). (3.1)

PROPOSITION 3.1. If x is axial (x ∈ GD ∪ GS), then (3.1) reduces to γ ∗ xσ(γ ) ∈
GD ∪ GS, γ = α ± β . For x ∈ GD we have: α ∗ xσ(α) + β ∗ x−σ(β) = γ ∗ xσ(γ ) =
γ ∗ x−σ(γ ) = γ ∗ x with γ = α + β . For x ∈ GS we obtain α ∗ xσ(α) + β ∗ x−σ(β) =
α ∗ xσ(α) + (−β) ∗ x−σ(β) = γ ∗ xσ(γ ) = |γ | ∗ xσ(γ ), where γ = α − β .

Proposition 3.1 deals with possible simplification of (3.1). We see that x can be
factored out if x is axial. In general, one can write formulae in the lines of (2.1),
e. g. for all c ∈ G, α, β ∈ R ,

(α + β) ∗ cσ(α +β) + α ∗ (c ¬ c)−σ(α) = α ∗ c−σ(α) + β ∗ cσ(β),
(α + β) ∗ cσ(α +β) + β ∗ (c ¬ c)−σ(β) = α ∗ cσ(α) + β ∗ c−σ(β),
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or, equivalently, for all c ∈ G, α, β ∈ R ,

(α + β) ∗ cσ(α +β) + γ ∗ (c ¬ c)−σ(γ ) = α ∗ cλσ(α) + β ∗ cσ(β), (3.2)

where γ is given by γ = {0, if λ = +; α, if λ = −}.
Minding that x cannot be simply factored out in (3.1), the first impression is that

one cannot solve an equation of the form

α ∗ xσ(α) + β ∗ x−σ(β) = d (3.3)

with respect to x in general. However, the next Proposition 3.2 shows that equation
(3.3) is solvable although the left-hand side cannot be reduced to one term.

PROPOSITION 3.2. Let α, β ∈ R , d ∈ G. If γ = α 2 − β 2 = 0, then equation (3.3)
is equivalent to

x = γ −1 ∗ (α ∗ dσ(α) ¬ β ∗ dσ(β))σ(γ ), (3.4)

which is the unique solution of (3.3). If β = α = 0, then (3.3) is equivalent to
x + x− = α−1 ∗ dσ(α) and, hence, is solvable iff d ∈ GD; we have x = (1 / 2) ∗ d + s,
s ∈ GS. If β = −α = 0, then (3.3) is equivalent to x ¬ x = α−1 ∗dσ(α) and is solvable
iff d ∈ GS; we have x = (1 / 2) ∗ d + t, t ∈ GD.

Note that the expression α ∗ dσ(α) ¬ β ∗ dσ(β) = α ∗ dσ(α) + (−β) ∗ d−σ(−β) in the
right-hand side of the solution (3.4) is of the form α ∗ dσ(α) + β ′ ∗ d−σ(β′), β ′ = −β ,

that is in the form (3.1). The following propositions hold true [11].

PROPOSITION 3.3. Assume that α 2 − β 2 = 0, then the equation for c ∈ G
α ∗ cσ(α) + β ∗ c−σ(β) = 0 (3.5)

implies c = 0 (that is, c = 0 is the unique solution to (3.5)).

PROPOSITION 3.4. If (α, β) = (0, 0), then (3.5) implies c ∈ GD ∪ GS.

PROPOSITION 3.5. Assume that c ∈ G, c = 0 and equation (3.5) holds. Then
α 2 − β 2 = 0. Furthermore, if α = 0 (and hence β = 0), then c ∈ (GD ∪ GS) \ {0}.

PROPOSITION 3.6. Let c ∈ G \ (GD ∪ GS). Then (3.5) implies α = β = 0.

Subspaces. A nonempty subset H of G is a subspace of G, if H is a subgroup
of G under addition (inherited from G) and is closed under multiplication by scalar
(inherited from G). In more detail, H is a subspace of G if and only if H ⊂ G and:
i) −a ∈ H and a + b ∈ H for all a, b ∈ H (i.e. H is a subgroup of G under addition);
ii) α ∗ c ∈ H for all α ∈ R , c ∈ H (i.e. H is closed under multiplication by scalar).
The following subspace criterion takes place:

LEMMA 3.1. H is a subspace of the quasilinear space with group structure G, if
and only if H ⊂ G and H is closed under “+”, “∗”, “dual”, i.e.: i) a + b ∈ H for
all a, b ∈ H; ii) α ∗ c ∈ H for all α ∈ R , c ∈ H; iii) a− ∈ H for all a ∈ H.



ON THE ALGEBRAIC PROPERTIES OF INTERVALS AND SOME APPLICATIONS 121

It is easy to check that GD and GS are subspaces of G; we call them the linear
subspace and the symmetric (quasilinear) subspace, respectively.

For c ∈ G the set span(c) = {α ∗ cσ(α) + β ∗ c−σ(β) | α, β ∈ R } is a subspace of G.
Every element of span(c) has a unique representation in the form (3.1) if and only
if c ∈ G \ (GD ∪ GS). The set span(c) is said to be spanned by c. This space is the
intersection of subspaces of G containing c.

Direct sum. Sum and direct sum of quasilinear spaces with group structure is
defined straightforward as in linear spaces. Namely, for two quasilinear spaces with
group structure G, H there is a least subspace containing both G and H, called
their sum and written G + H. We have G + H = {u + v | u ∈ G, v ∈ H}. Similarly,
one defines the sum of any finite set of subspaces G1, …,Gk : G1 + · · · + Gk =
{∑ ui | ui ∈ Gi}. Let G be a quasilinear space with group structure and H1, …,Hk

any subspaces of G. We say that G is the direct sum of the spaces H1, …,Hk and
write G = H1 ⊕ · · · ⊕ Hk, if each u ∈ G can be uniquely expressed in the form
u = v1 + v2 + · · · + vk, where vi ∈ Hi, i = 1, …, k. One can show: 1) A sum G + H
is direct if u1 + v1 = u2 + v2, u1, u2 ∈ G, v1, v2 ∈ H imply u1 = u2, v1 = v2 (or,
equivalenly, u + v = 0, u ∈ G, v ∈ H imply u = 0, v = 0); 2) Q = G ⊕ H ⇐⇒
Q = G + H and G ∩ H = 0.

4. Symmetric Quasilinear Spaces with Group Structure

We shall assume in this section that the quasilinear space with group structure
G is symmetric, G = GS. From Proposition 3.1 we know that for x ∈ G = GS,
expression (3.1) reduces to the form γ ∗ xσ(γ ) ∈ GD ∪ GS, γ ∈ R . This suggests
that in a symmetric quasilinear space with group structure we may define linear
combination, linear dependence and basis as follows.

DEFINITION 4.1. Let c(1), c(2), …, c(k) be finitely many (not necessarily distinct)
elements of G (G = GS). An element g of G of the form

g = α1 ∗ c(1)
σ(α1) + α2 ∗ c(2)

σ(α2) + · · · + αk ∗ c(k)
σ(αk), (4.1)

where α1, α2, …, αk ∈ R , is called a linear combination of c(1), c(2), …, c(k) ∈ G.

A linear combination (4.1) having a trivial system (α1, α2, …, αk) = (0, 0, …, 0)

is called trivial. We write symbolically (4.1) as g =
k∑

i= 1
αi ∗ c(i)

σ(αi).

PROPOSITION 4.1. Let h(1), h(2), …, h(l) be l linear combinations of c(1), c(2), …,
c(k) ∈ G = GS and g be a linear combination of h(1), h(2), …, h(l). Then g is a linear
combination of c(1), c(2), …, c(k).

PROPOSITION 4.2. Let c(1), c(2), …, c(k) ∈ G = GS, k ≥ 1. The set H =
{ k∑

i= 1
αi ∗

c(i)
σ(αi) | αi ∈ R

}
of all linear combinations of c(1), c(2), …, c(k) is a subspace of G.
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We say that the elements c(1), c(2), …, c(k) ∈ G = GS form a generating set of the
subspace H defined in Proposition 4.2 or that H is spanned by c(1), c(2), …, c(k) and
write H = span{c(1), c(2), …, c(k)}. The space H is the intersection of all subspaces
of G containing c(1), c(2), …, c(k).

DEFINITION 4.2. LetG = GS be a symmetric quasilinear space with group structure
over R . The elements c(1), c(2), …, c(k) ∈ G, k ≥ 1, are linearly dependent (over R ),
if there exists a nontrivial linear combination of {c(i)}, which is equal to 0, i.e. if
there exist a nontrivial system {αi}k

i= 1, such that

α1 ∗ c(1)
σ(α1) + α2 ∗ c(1)

σ(α2) + · · · + αk ∗ c(k)
σ(αk) = 0. (4.2)

Elements of G, which are not linearly dependent, are linearly independent. In
other words the elements c(1), c(2), …, c(k) ∈ G are linearly independent, if (4.2) is
possible only for the trivial linear combination, such that αi = 0 for all i = 1, …, k.
Clearly, a single element c ∈ G is linearly dependent, iff c = 0, and is linearly
independent, iff c = 0.

PROPOSITION 4.3. Let G = GS be a symmetric quasilinear space with group
structure over R . The elements c(1), c(2), …, c(k) ∈ G, k ≥ 2, are linearly dependent,
iff at least one of the elements is a linear combination of the other elements.

Similarly, given k elements c(1) , c(2), …, c(k), if l < k elements of them are linearly
dependent, then all k elements are also linearly dependent. In particular, if c(i) = 0
for some i, 1 ≤ i ≤ k, then the elements c(1), c(2), …, c(k) are linearly dependent.

DEFINITION 4.3. LetG = GS be a symmetric quasilinear space with group structure
over R . The set {c(i)}k

i= 1, c(i) ∈ G, k ≥ 1, is a basis of G, if c(i) are linearly
independent and G = span{c(i)}k

i= 1.

THEOREM 4.1. Let G = GS be a symmetric quasilinear space with group structure
over R . A set {c(i)}k

i= 1, c(i) ∈ G, k ≥ 1, is a basis of G, iff every g ∈ G can be
presented in the form (4.1) in a unique way (i.e. with unique scalars αi).

Theorem 4.1 implies that, if {c(i)}k
i= 1 is a basis of G, i.e. G = span{c(1), c(2), …,

c(k)}, then every Gi = span{c(i)} is a quasilinear subspace of G; moreover we have
Gi ∩ Gj = 0, i = j. Therefore G is a direct sum of Gi: G = G1 ⊕ G2 ⊕ · · · ⊕ Gk =
span{c(1)} ⊕ span{c(2)} ⊕ · · · ⊕ span{c(k)}. It can be proved that if G is spanned
over a basis of k elements, then any other basis of G consists of k elements. The
number k is called the dimension of G.

If {c(i)} is a fixed basis of G then the reals αi in (4.1), presenting uniquely ƒ ∈ G
are called (symmetric) coordinates of g. The correspondence g −→ (α1, α2, …, αk)
is a bijection, so that we can write g = (α1, α2, …, αk). The arithmetic operations in
G induce corresponding operations in R

k as follows:

(α1, α2, …, αk) + (β1, β2, …, βk) = (α1 + β1, α2 + β2, …, αk + βk), (4.3)

γ ∗ (α1, α2, …, αk) = (|γ |α1, |γ |α2, …, |γ |αk). (4.4)
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To prove (4.4) we note that γ ∗ g = γ ∗ (α1 ∗ c(1)
σ(α1) + α2 ∗ c(2)

σ(α2) + · · ·+ αk ∗ c(k)
σ(αk)) =

((γ α1) ∗ c(1)
σ(γ α1) + (γ α2) ∗ c(2)

σ(γ α2) + · · ·+ (γ αk) ∗ c(k)
σ(γ αk))σ(γ ) = (γ α1, γ α2, …, γ αk)σ(γ ) =

(|γ |α1, |γ |α2, …, |γ |αk). Clearly, the system (R k, +, R , ∗) with addition (4.3) and
multiplication by real scalar (4.4) is a symmetric quasilinear space (with group
structure) which is isomorphic to (G, +, R , ∗). Negation in G = GS is same as identity.

Conjugation in G = GS coincides with opposite: opp(a) = a− =
k∑

i= 1
αi ∗ c(i)

−σ(αi) =
k∑

i= 1
(−αi) ∗ c(i)

σ(−αi). This implies in terms of (R k, +, R , ∗):

(α1, α2, …, αk)− = −(α1, α2, …, αk) = (−α1,−α2, …,−αk). (4.5)

Linear multiplication in G. In (R k, +, R , ∗) we introduce the operation “⋅”:
R × Rk −→ R

k by means of λ ⋅ x = λ ∗ xσ(λ ). Clearly, the system (R k, +, R , ⋅) is
a linear space. However, this space does not contain the operation “∗”, which is
important for our purposes. Conversely, the quasilinear space (R k, +, R , ∗) possesses
the linear multiplication “⋅” (the dot may be omitted). Using this operation we may
write: λ ∗ x = λxσ(λ ) = λσ(λ )x = |λ |x.

Equations. The general form of an equation involving one variable in G = GS

is α ∗ x = c, having a solution x = α−1 ∗ c. We demonstrate the coordinate
method on the same example. Let b ∈ G, b = 0, be an arbitrary basis in G =
GS, assume that c = γ ∗ bσ(γ ) and denote x = ξ ∗ bσ(ξ). Substituting in α ∗ x =
c, we obtain the equation (αξ) ∗ bσ(ξ) + (−γ ) ∗ b−σ(γ ) = 0. If α ≥ 0, then, by
the quasidistributive law, this equation reduces to (αξ) ∗ bσ(αξ) + (−γ ) ∗ bσ(−γ ) =
(αξ − γ ) ∗ bσ(αξ −γ ) = 0, which is equivalent to αξ − γ = 0, resp. ξ = γ / α. If α < 0,
then we have (αξ) ∗ b−σ(αξ) + (−γ ) ∗ b−σ(γ ) = 0; using Proposition 3.1 we obtain
αξ + γ = 0, resp. ξ = −γ / α. Summarizing both cases we obtain ξ = γ / |α|. This is
a special case of the general case of a system of linear equations, see e.g. [9].

5. Nonaxial Quasilinear Spaces with Group Structure

Basis in nonaxial quasilinear spaces with group structure. In this section we
assume that G is a quasilinear space with group structure, which is not axial, that is
not linear (G = GD), and not symmetric (G = GS). In G we define (nonaxial) basis
as follows.

DEFINITION 5.1. Let c(1), c(2), …, c(k) be finitely many (not necessarily distinct)
elements of G. An element g of G of the form

g = α1 ∗ c(1)
σ(α1) + β1 ∗ c(1)

−σ(β1) + · · · + αk ∗ c(k)
σ(αk) + βk ∗ c(k)

−σ(βk), (5.1)

where α1, β1, α2, β2, …, αk, βk ∈ R , is called a linear combination of c(1), c(2), …,
c(k) ∈ G.



124 SVETOSLAV MARKOV

PROPOSITION 5.1. Let d(1), d(2), …, d(l) be l linear combinations of c(1), c(2), …,
c(k) ∈ G and g be a linear combination of d (1), d(2), …, d(l). Then g is a linear
combination of c(1), c(2), …, c(k).

PROPOSITION 5.2. Let c(1), c(2), …, c(k) ∈ G, k ≥ 1. The set H =
{ k∑

i= 1
(αi ∗ c(i)

σ(αi) +

βi ∗ c(i)
−σ(βi)) | αi, βi ∈ R

}
of all linear combinations of c(1), c(2), …, c(k) is a subspace

of G.

DEFINITION 5.2. We say that the subspace H defined in Proposition 5.2 is spanned
by c(1), c(2), …, c(k) ∈ G and write H = span{c(1), c(2), …, c(k)}. The elements
c(1), c(2), …, c(k) are a generating set for H. The elements c(1), c(2), …, c(k) ∈ G,
k ≥ 1, are linearly dependent (in G over R ), if there exists a nontrivial linear
combination of {c(i)}, which is equal to 0, i.e. if there exists a nontrivial system
{(αi, βi)}k

i= 1, such that

α1 ∗ c(1)
σ(α1) + β1 ∗ c(1)

−σ(β1) + · · · + αk ∗ c(k)
σ(αk) + βk ∗ c(k)

−σ(βk) = 0. (5.2)

The elements c(1), c(2), …, c(k) ∈ G are linearly independent, if (5.2) is possible
only for the trivial linear combination, such that αi = βi = 0 for all i = 1, …, k.
Using Propositions 3.4 and 3.6 we conclude that a single element of G is linearly
dependent iff it is axial, and is linearly independent iff nonaxial.

PROPOSITION 5.3. The elements c(1), c(2), …, c(k) ∈ G, k ≥ 2, are linearly depen-
dent, iff at least one of the elements is a linear combination of the other elements.

Given k elements c(1), c(2), …, c(k) ∈ G, if l < k elements of them are linearly
dependent, then all k elements are also linearly dependent. In particular, if c(i) for
some i, 1 ≤ i ≤ k, is axial, then c(1), c(2), …, c(k) are linearly dependent.

DEFINITION 5.3. The set {c(i)}k
i= 1, c(i) ∈ G, k ≥ 1, is a (nonaxial) basis of G, if

c(i) are linearly independent and G = span{c(i)}k
i= 1.

THEOREM 5.1. A set {c(i)}k
i= 1, c(i) ∈ G, k ≥ 1, is a basis of G, iff every g ∈ G can

be presented in the form (5.1) in a unique way (i.e. with unique scalars αi, βj).

According to Theorem 5.1, if {c(i)}k
i= 1 is a basis of G, then Gi = span{c(i)} is

a quasilinear subspace of G for any i = 1, …, k; moreover, we have Gi ∩ Gj = 0,
i = j. Hence we can present G as a direct sum of Gi: G = G1 ⊕ G2 ⊕ · · · ⊕ Gk, that
is span{c(1), c(2), …, c(k)} = span{c(1)} ⊕ · · · ⊕ span{c(k)}. In a quasilinear space
with a nonaxial basis the symmetric dimension is equal to the linear one, k = m;
such is the case with m-dimensional intervals.

Transition from nonaxial to axial basis. Recall that if G is nonaxial, then a
single element c ∈ G is linearly dependent if and only if c is axial (c ∈ GD ∪ GS); in
particular, the element c = 0 is linearly dependent. Indeed, consider equation (3.5)
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for c: α ∗ cσ(α) + β ∗ c−σ(β) = 0 with (α, β) = (0, 0), that is assume that the linear
combination of c is nontrivial. From Proposition 3.4 we know that there exists a
solution c ∈ GD ∪ GS to (3.5).

PROPOSITION 5.4. If c is nonaxial, i.e. c ∈ G \ (GD ∪ GS), then d = α ∗ cσ(α) +
β ∗ c−σ(β) is axial (d ∈ GD ∪ GS), if and only if α 2 − β 2 = 0. More specifically:

i) d is linear, i.e. α ∗ cσ(α) + β ∗ c−σ(β) ∈ GD, iff α = β;

ii) d is symmetric, i.e. α ∗ cσ(α) + β ∗ c−σ(β) ∈ GS, iff α = −β .

PROPOSITION 5.5. Assume c ∈ G \ (GD ∪ GS) and H = span{c}. Then H = HS ⊕
HD.

Proof. By assumption H = span{c} = {α ∗ cσ(α) + β ∗ c−σ(β) | α, β ∈ R }. For
the symmetric, resp. linear, subspace of H we have:

HS = {α ∗ cσ(α) + β ∗ c−σ(β) | α = −β} = {α ∗ (c ¬ c)σ(α) | α ∈ R },
HD = {α ∗ cσ(α) + β ∗ c−σ(β) | α = β} = {α ∗ (c + c−) | α ∈ R }.

Every element c ∈ H can be presented as c = s + t, where s = (c ¬ c) / 2 ∈ HS,
t = (c + c−) / 2 ∈ HD, hence, H = HS + HD. More specifically, we have

H = {α ∗ sσ(α) + β ∗ t−σ(β) | α, β ∈ R } = {|α| ∗ sσ(α) + β ∗ t | α, β ∈ R }. (5.3)

Due to HS ∩ HD = 0 and HS = span{s} = {α ∗ sσ(α) | α ∈ R } = {|α| ∗ sσ(α) |
α ∈ R }; HD = span{t} = {β ∗ t | β ∈ R }, we see that H = HS ⊕ HD. �

The elements s = s(c) = (c ¬ c) / 2 ∈ HS, t = t(c) = (c + c−) / 2 ∈ HD are
projections of c on the axial subspaces HS, resp. HD. If c ∈ G is fixed, then s(c) and
t(c) are also fixed. The coefficients α, β in (5.3) are the (center-radius) coordinates
of the element g = α ∗ sσ(α) + β ∗ t−σ(β); α is the radius and β is the center of g.
Clearly, s is a basis in HS, and t is a basis in HD.

Proposition 5.5 can be generalized for a nonaxial quasilinear space with group
structure G spanned over a (nonaxial) generating set of k elements c(i) ∈ G \
(GS ∪ GD), i = 1, …, k. Consider the corresponding projections on the axial spaces,
that is the k symmetric elements s(i) = (c(i) ¬ c(i)) / 2 ∈ GS, and the k linear
elements t(i) = (c(i) + c(i)

− ) / 2 ∈ GD, such that c(i) = s(i) + t(i), i = 1, …, k. Hence a
generating set (basis) in G induces respective generating sets (bases) in the two axial
subspaces (the symmetric and the linear one), so that we can present the elements of

G uniquely in the form
k∑

i= 1
(|αi| ∗ s(i)

σ(αi) + βi ∗ t(i)). Thus the following generalization

of Proposition 5.5 holds:

THEOREM 5.2. Let G be a nonaxial quasilinear space with group structure with a
finite basis c(1), …, c(k). Then G = GS ⊕ GD. Moreover, the system s(i) = (c(i) ¬ c(i)) /
2, i = 1, …, k, is a basis for the symmetric subspace GS, and the system t(i) =
(c(i) + c(i)

− ) / 2, i = 1, …, k is a basis for the linear susbspace GD.
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If {c(i)} is a nonaxial basis of G, then {s(i)} is a (symmetric) basis of GS and
{t(i)} is a (linear) basis of GD; the dimensions of the symmetric space GS and linear
space GD are equal.

The one-dimensional interval case. Consider the monoid of all (proper) one-
dimensional intervals (I(R ), +). Intervals are usually presented in end-point form,
however the above theory of quasilinear spaces points out that the natural pre-
sentation of intervals is in center-radius form. That center-radius coordinates are
most suitable for computations with intervals has been practically motivated by T.
Sunaga, see [12]. Introducing interval multiplication by scalar we obtain the system
(I(R ), +, R , ∗), which is a cancellative quasilinear space with monoid structure.

The space (I , +, R , ∗), I = disI(R ) = I(R )2 / ρ, is the induced quasilinear space
with group structure of extended (generalized, Kaucher, directed, modal etc.) inter-
vals [2], [5], [10]; I is a direct sum of a one-dimensional linear space (of the
centers of the intervals) and a one-dimensional symmetric quasilinear space with
group structure (of generalized symmetric intervals), I = ID ⊕ IS, ID

∼= R .
Let t be a basis of ID, so that the coordinates of t in I = ID ⊕ IS are 1,

resp. 0; we simply write t = (1; 0); also let s be the basis of IS so that s = (0; 1),
so that the pair t, s is a basis of I . Denoting the center/radius coordinates of
a ∈ I by a′, resp. a′′, we write a = (a′; a′′) ∈ I with a′, a′′ ∈ R . We thus
have: a = a′ ∗ t + a′′ ∗ sσ(a′′). Some operations in center-radius form are: (a′; a′′) +
(b′; b′′) = (a′ + b′; a′′ + b′′), γ ∗ (a′; a′′) = (γ a′; |γ |a′′), ¬(a′; a′′) = (−a′; a′′),
opp(a′; a′′) = (−a′;−a′′), (a′; a′′)− = (a′;−a′′), (a′; a′′) ¬ (b′; b′′) = (a′ − b′;
a′′ + b′′), (a′; a′′) + (b′; b′′)− = (a′ + b′; a′′ − b′′), (a′; a′′) ¬ (b′; b′′)− = (a′ − b′;
a′′−b′′), γ ∗ (a′; a′′)− = (γ a′; −|γ |a′′), γ ∗ (a′; a′′)σ(γ ) = (γ a′; γ a′′). The last formula
presents the linear multiplication by scalar γ ⋅ (a′; a′′) = (γ a′; γ a′′) = γ ∗ (a′; a′′)σ(γ )

[3]. An interpretation of this operation and some applications are given in [11].

Concluding remarks. We have shown that in an interval quasilinear space with
group structure one can naturally extend concepts from linear algebra, such as linear
combination, linear dependence and basis. These concepts allow to formulate and
solve certain classes of interval algebraic problems in the framework of linear alge-
bra. In particular interval algebraic problems can be reformulated as real algebraic
problems for the coordinates of the intervals without increasing the dimension of
the problem [9]. For the interpretation of solutions the theory of modal intervals
can be used [4]. A simple interpretation can be obtained by a presentation of the
interval quasilinear space with group structure as an union of two quasilinear spaces
with monoid structure similar to the decomposition of the system of real numbers
into two quasilinear systems with monoid structures: one of nonnegative and one of
nonpositive numbers. Such a presentation for one-dimensional intervals has been
studied abstractly in [10].
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(1973), pp. 73–79.

7. Kurosh, A. G.: Lectures on General Algebra, Chelsea, 1963.
8. MacLane, S. and Birkhoff, G.: Algebra, 2nd ed., Macmillan, N.Y., 1979.
9. Markov, S.: An Iterative Method for Algebraic Solution to Interval Equations, Appl. Num. Math.

30 (2–3) (1999), pp. 225–239.
10. Markov, S.: Isomorphic Embedding of Abstract Interval Systems, Reliable Computing 3 (3)

(1997), pp. 199–207.
11. Markov, S.: On the Algebraic Properties of Convex Bodies and Some Applications, J. Convex

Analysis 7 (1) (2000), pp. 129–166.
12. Markov, S. and Okumura, K.: The Contribution of T. Sunaga to Interval Analysis and Reliable

Computing, in: Csendes, T. (ed.), Developments in Reliable Computing, Kluwer Academic
Publishers, 1999, pp. 167–188.

13. Mayer, O.: Algebraische und metrische Strukturen in der Intervallrechnung und einige Anwen-
dungen, Computing 5 (1970), pp. 144–162.
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